This paper describes a full-scale physical model and its application to investigate the effectiveness/performance of small-bore sewers for a range of operational and design parameters. The implementation methodology involves observing the movement of synthetic gross solids in three small bore sewers (150, 100 and 75 mm diameter) for different volumes of simulated flush waves and gradients. The simulated flush waves were generated, using an automated wave sequencer, for three different flush volumes (3, 4.5 and 6 litres). To investigate the impact of solid shape factor, a number of tests were carried out using synthetic solids in combination with toilet tissue paper. In total, more than 1,000 tests were performed for different operational and design parameter combinations. Results obtained to date have confirmed earlier studies, particularly with respect to the role of flush volume in solids transport, and identified the impact of gradient variation and its significance particularly in small-bore sewers receiving low flush volume. Results from the physical model application exercise will be used to propose new design guidelines for wastewater collection systems with specific consideration to new developments and inform the decision support system, currently being developed as part of a research project on water cycle management for new developments (WaND).

This content is only available as a PDF.
You do not currently have access to this content.