If technologies for decentralised sanitation and reuse (DESAR) and for natural stormwater management should at least partially replace existing systems, then intensive reconstruction work becomes essential. A conversion can only be realised successively over a long period due to high construction and financial expenses and requires new strategies. This paper presents the development and practical implementation of a mathematical tool to find an optimised strategy for the realisation of alternative and more decentralised drainage and sanitation concepts in existing urban areas. The succession of construction measures (e.g. the implementation of decentralised greywater recycling) for the whole period of consideration is determined based upon a mathematical optimisation model on the condition that the favoured future state is known. The model describes the complex interdependencies of the urban water and nutrient cycle and enables the minimisation of both financial efforts and ecological impacts on the way toward the future state. The results of the implementation for a rural area in Germany show that the mathematical optimisation is an adequate instrument to support decision-making processes in finding strategies for the realisation of sustainable urban water management.

This content is only available as a PDF.
You do not currently have access to this content.