An improved breakage kernel was developed to describe the kinetics of aggregate breakage induced by fluid shear. The model includes the effects of both the internal bonding forces of an aggregate and the fluid shear stress exerting on the aggregate. The ratio of the two opposite forces regulates the probability of the aggregate breakage. With the improved breakage model and the sectional numerical technique, the breakage dominant process can be well simulated by the change in particle size distribution (PSD). The results show that the fractal dimension plays a significant role in the breakage process. As the fractal dimension approaches three, the aggregates become more difficult to break. Higher shear intensity, to a great extent, enhances the breakage kinetics. The internal forces are directly related to the bonding strength of the aggregates. Hydrophobic forces increase the floc strength and hence reduce the breakage rate and probability. In addition, two distinct breakage daughter distribution functions, binary and ternary, give eventually almost the same results in PSD after breakage. It appears that the breakage daughter distribution function is less important for the description of the particle fragmentation.
Skip Nav Destination
Article navigation
Research Article|
January 01 2008
Modelling the kinetics of aggregate breakage using improved breakage kernel
Xiao Feng;
1Department of Civil Engineering, The University of Hong Kong, Pokfulam Rd, Hong Kong, China E-mail:; [email protected]
E-mail: [email protected]
Search for other works by this author on:
Li Xiao-yan
Li Xiao-yan
1Department of Civil Engineering, The University of Hong Kong, Pokfulam Rd, Hong Kong, China E-mail:; [email protected]
Search for other works by this author on:
Water Sci Technol (2008) 57 (1): 151–157.
Citation
Xiao Feng, Li Xiao-yan; Modelling the kinetics of aggregate breakage using improved breakage kernel. Water Sci Technol 1 January 2008; 57 (1): 151–157. doi: https://doi.org/10.2166/wst.2008.789
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
eBook
Pay-Per-View Access
$38.00