Nowadays, most membrane bioreactors are using membranes submerged in the biomass and aeration in the concentrate compartment to limit or to control fouling. An important issue for the design of modules or membrane bundles in MBRs is to understand how the air/liquid flow is behaving and influencing fouling and its reversibility in relationship to the module properties. This paper focuses on an innovative and very specific process, in which HF membranes are put in a cartridge outside the activated sludge tank and a recycling loop is associated to the cartridge in order to decrease concentration of foulant species at the membrane surface and mass transfer resistance. Recycling operates with a very low liquid velocity in the module (a few cm·s−1) which constitutes a specificity of this process in terms of filtration operation. The aim of this study is to characterise two-phase flow and its effects on fouling and fouling reversibility at the scale of a semi-industrial bundle of outside/in hollow fibres, and as a function of bundle properties (packing density, fibre diameter), using specific methods to characterise the flow and fouling effects. Two modules were used showing a different packing density. Filtration was operated at constant permeate flux with clay suspension at 0.65 g·l−1 in the same hydrodynamic conditions. Fouling kinetics and irreversibility were characterised by an adapted step method, and gas and liquid flows were characterised at global scale by residence time distribution analyses and gas hold-up. Fouling velocities are clearly influenced by gas velocity. The proportion of dead to total volume in the module is mainly affected by the liquid flow velocity and module design. The module with the higher fibre diameter and the lower packing density showed better performances in terms of fouling which was correlated with better flow properties.

This content is only available as a PDF.
You do not currently have access to this content.