This study describes the integration of IWA's anaerobic digestion model (ADM1) within a computational model of microbial fuel cells (MFCs). Several populations of methanogenic and electroactive microorganisms coexist suspended in the anolyte and in the biofilm attached to the anode. A number of biological, chemical and electrochemical reactions occur in the bulk liquid, in the biofilm and at the electrode surface, involving glucose, organic acids, H2 and redox mediators. Model output includes the evolution in time of important measurable MFC parameters (current production, consumption of substrates, suspended and attached biomass growth). Two- and three-dimensional model simulations reveal the importance of current and biomass heterogeneous distribution over the planar anode surface. Voltage- and power–current characteristics can be calculated at different moments in time to evaluate the limiting regime in which the MFC operates. Finally, model simulations are compared with experimental results showing that, in a batch MFC, smaller electrical resistance of the circuit leads to selection of electroactive bacteria. Higher coulombic yields are so obtained because electrons from substrate are transferred to anode rather than following the methanogenesis pathway. In addition to higher currents, faster COD consumption rates are so achieved. The potential of this general modelling framework is in the understanding and design of more complex cases of wastewater-fed microbial fuel cells.
Skip Nav Destination
Article navigation
Research Article|
April 01 2008
Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion
C. Picioreanu;
1Department of Biotechnology, Delft University of Technology, Faculty of Applied Sciences, Julianalaan 67, 2628 BC, Delft, The Netherlands
E-mail: [email protected]
Search for other works by this author on:
K. P. Katuri;
K. P. Katuri
2University of Newcastle Upon Tyne, School of Chemical Engineering & Advanced Materials, Merz Court, Newcastle Upon Tyne, Tyne & Wear NE1 7RU, UK
Search for other works by this author on:
I. M. Head;
I. M. Head
3University of Newcastle Upon Tyne, School of Civil Engineering and Geosciences, Devonshire Building, Newcastle Upon Tyne, Tyne & Wear NE1 7RU, UK
Search for other works by this author on:
M. C. M. van Loosdrecht;
M. C. M. van Loosdrecht
1Department of Biotechnology, Delft University of Technology, Faculty of Applied Sciences, Julianalaan 67, 2628 BC, Delft, The Netherlands
Search for other works by this author on:
K. Scott
K. Scott
2University of Newcastle Upon Tyne, School of Chemical Engineering & Advanced Materials, Merz Court, Newcastle Upon Tyne, Tyne & Wear NE1 7RU, UK
Search for other works by this author on:
Water Sci Technol (2008) 57 (7): 965–971.
Citation
C. Picioreanu, K. P. Katuri, I. M. Head, M. C. M. van Loosdrecht, K. Scott; Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water Sci Technol 1 April 2008; 57 (7): 965–971. doi: https://doi.org/10.2166/wst.2008.095
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
eBook
Pay-Per-View Access
$38.00