Removal property of nine pharmaceuticals (clofibric acid, diclofenac, fenoprofen, gemfibrozil, ibuprofen, indomethacin, ketoprofen, naproxen and propyphenazone) by chlorination, coagulation–sedimentation and powdered activated carbon treatment was examined by laboratory-scale experiments under the conditions close to actual drinking water treatment processes. Indomethacin and propyphenazone were completely degraded by chlorination within 30 minutes, but others remained around 30% (naproxen and diclofenac) or more than 80% of the initial concentration after 24 hours. A couple of unidentified peaks in a chromatogram of the chlorinated samples suggested the formation of unknown chlorination by-products. Competitive adsorption was observed when the mixed solution of the target pharmaceuticals was subjected to batch adsorption test with powdered activated carbon. Clofibric acid and ibuprofen, which were relatively less hydrophobic among the nine compounds, persisted around 60% of the initial concentration after 3 hours of contact time. Removal performance in actual drinking water treatment would become lower due to existence of other competitive substances in raw water (e.g. natural organic matter). Coagulation–sedimentation using polyaluminium chloride hardly removed most of the pharmaceuticals even under its optimal dose for turbidity removal. It is suggested that the most part of pharmaceuticals in raw water might persist in the course of conventional drinking water treatments.

You do not currently have access to this content.