A two-stage hydrogen/methane fermentation process has emerged as a feasible engineering system to recover bio-energy from wastewater. Hydrogen-producing bacteria (HPB) generate hydrogen from readily available carbohydrates, and organic acids produced during the hydrogen fermentation step can be degraded to generate methane in the following step. Three strong acids, HCl, H2SO4, and HNO3, were tested to determine the appropriate pre-treatment method for enhanced hydrogen production. The hydrogen production rates of 230, 290, and 20 L/kg-glucose/day was observed for the sludge treated with HCl, H2SO4, and HNO3, respectively, indicating that the acid pre-treatment using either HCl or H2SO4 resulted in a significant increase in hydrogen production. The fluorescent in situ hybridization method indicated that the acid pre-treatment selectively enriched HPB including Clostridium sp. of cluster I from inoculum sludge. After hydrogen fermentation was terminated, the sludge was introduced to a methane fermentation reactor. This experiment showed methane production rates of 100, 30, and 13 L/kg-glucose/day for the sludge pre-treated with HCl, H2SO4, and HNO3, respectively, implying that both sulfate and nitrate inhibited the activity of methane-producing bacteria. Consequently, the acid pre-treatment might be a feasible option to enhance biogas recovery in the two-stage fermentation process, and HCl was selected as the optimal strong acid for the enrichment of HPB and the continuous production of methane.
Skip Nav Destination
Article navigation
Research Article|
June 01 2009
Enhanced bio-energy recovery in a two-stage hydrogen/methane fermentation process
M. J. Lee;
M. J. Lee
1School of Architectural, Civil & Environmental Engineering, Center for Environmental Studies, Kyunghee University, Yongin 449-701, South Korea E-mail: [email protected]; [email protected]
Search for other works by this author on:
J. H. Song;
J. H. Song
2Department of Civil & Environmental Engineering, Sejong University, Seoul 143-747, South Korea E-mail: [email protected]
Search for other works by this author on:
S. J. Hwang
1School of Architectural, Civil & Environmental Engineering, Center for Environmental Studies, Kyunghee University, Yongin 449-701, South Korea E-mail: [email protected]; [email protected]
E-mail: [email protected]
Search for other works by this author on:
Water Sci Technol (2009) 59 (11): 2137–2143.
Citation
M. J. Lee, J. H. Song, S. J. Hwang; Enhanced bio-energy recovery in a two-stage hydrogen/methane fermentation process. Water Sci Technol 1 June 2009; 59 (11): 2137–2143. doi: https://doi.org/10.2166/wst.2009.236
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
eBook
Pay-Per-View Access
$38.00