Flow through a gross pollutant trap (GPT) with fully blocked screens is investigated experimentally and theoretically using computational fluid dynamics (CFD). Due to the wide range of possible flow regimes, an experimental approach is developed which uses a downstream weir arrangement to control the nature of the flow and the variation in free surface height. To determine the overall flow structure, measurements are taken at a fixed depth throughout the trap with an Acoustic Doppler Velocimeter (ADV), including velocity profile data across three cross sections of the GPT suitable for more detailed comparison with simulations. Observations of the near-wall flow features at the free surface are also taken, due to their likely importance for understanding litter capture and retention in the GPT. Complementary CFD modelling (using Fluent 6.3) is performed using a two-dimensional k−ɛ turbulence model along with either standard wall law boundary conditions or enhanced near-wall modelling approaches. Comparison with experiments suggest that neither CFD modelling approach could be considered as clearly superior to the other, despite the significant difference in near-wall mesh refinement and modelling that is involved. The experimental approach taken here is found useful to control the flow regime in the GPT and further experiments are recommended to study a greater range of flow conditions.
Skip Nav Destination
Article navigation
Research Article|
March 01 2009
An experimental and theoretical investigation of flow in a gross pollutant trap
J. T. Madhani;
1School of Engineering Systems, Queensland University of Technology, Garden Point Campus, Brisbane 4001, Australia E-mail: j.madhani@qut.edu.au; richard.brown@qut.edu.au
E-mail: j.madhani@qut.edu.au
Search for other works by this author on:
N. A. Kelson;
N. A. Kelson
2HPC & Research Support Group, Queensland University of Technology, Garden Point Campus, Brisbane 4001, Australia E-mail: n.kelson@qut.edu.au
Search for other works by this author on:
R. J. Brown
R. J. Brown
1School of Engineering Systems, Queensland University of Technology, Garden Point Campus, Brisbane 4001, Australia E-mail: j.madhani@qut.edu.au; richard.brown@qut.edu.au
Search for other works by this author on:
Water Sci Technol (2009) 59 (6): 1117–1127.
Citation
J. T. Madhani, N. A. Kelson, R. J. Brown; An experimental and theoretical investigation of flow in a gross pollutant trap. Water Sci Technol 1 March 2009; 59 (6): 1117–1127. doi: https://doi.org/10.2166/wst.2009.044
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Impact Factor 1.915
CiteScore 3.4 • Q2
13 days submission to first
decision
1,439,880 downloads in 2021
69
Views
4
Citations