The 5-day biological oxygen demand (BOD5) remains a key indicator for proof of compliance with environmental regulators in the monitoring and management of winery effluent. Inter-conversion factors from alternative tests that are more rapid, accurate and simpler to perform have been determined that allow prediction of BOD5 in winery wastewaters, generally, and at different stages of production and treatment. Mean values obtained from this dataset offer rule of thumb inter-conversion factors: BOD5 = 0.7 Chemical Oxygen Demand (COD), BOD5 = 2.3 Total Organic Carbon (TOC) and BOD5 = 2.7 Dissolved Organic Carbon (DOC). Specific predictive linear relationships are also provided. Out of the relationships between BOD5vs COD, TOC and DOC, in winery wastewater, irrespective of vintage or non-vintage production periods and stage of treatment, TOC offered the most reliable prediction of BOD5. Ethanol, glucose and fructose were evaluated in untreated wastewater as predictors of BOD5 due to their high specificity in winery effluent. A significant relationship was determined between BOD5 and (ethanol + glucose + fructose; R2 = 0.64, n = 19; p < 0.05), but relationships between BOD5 and ethanol and BOD5vs (glucose + fructose) were weak (R2 = 0.45 and 0.34; n = 19; p < 0.05 respectively,). There was a very strong linear correlation (y = 0.9767x + 52.8; R2 = 0.97; n = 23; p < 0.05) in COD data in winery effluents when using a commercially available mercury free test kit compared with using a traditional COD test kit that contained mercury. This suggests that mercury free COD test kits could be used by the wine industry for organic pollution assessment with associated reductions to user and environmental risk, as well as reducing the costs of kit waste disposal.
Skip Nav Destination
Article navigation
Research Article|
November 01 2009
Evaluation of organic matter concentration in winery wastewater: a case study from Australia
Wendy C. Quayle;
1CSIRO Land and Water, Griffith Laboratory, Research, Station Road, Griffith NSW 2680, Australia E-mail: [email protected]; [email protected]; [email protected]; [email protected]
E-mail: [email protected]
Search for other works by this author on:
Alison Fattore;
Alison Fattore
1CSIRO Land and Water, Griffith Laboratory, Research, Station Road, Griffith NSW 2680, Australia E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for other works by this author on:
Roy Zandona;
Roy Zandona
1CSIRO Land and Water, Griffith Laboratory, Research, Station Road, Griffith NSW 2680, Australia E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for other works by this author on:
Evan W. Christen;
Evan W. Christen
1CSIRO Land and Water, Griffith Laboratory, Research, Station Road, Griffith NSW 2680, Australia E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for other works by this author on:
Michele Arienzo
Michele Arienzo
1CSIRO Land and Water, Griffith Laboratory, Research, Station Road, Griffith NSW 2680, Australia E-mail: [email protected]; [email protected]; [email protected]; [email protected]
Search for other works by this author on:
Water Sci Technol (2009) 60 (10): 2521–2528.
Citation
Wendy C. Quayle, Alison Fattore, Roy Zandona, Evan W. Christen, Michele Arienzo; Evaluation of organic matter concentration in winery wastewater: a case study from Australia. Water Sci Technol 1 November 2009; 60 (10): 2521–2528. doi: https://doi.org/10.2166/wst.2009.688
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
eBook
Pay-Per-View Access
$38.00