A batch of the Organic Fraction of Municipal Solid Waste (OFMSW) was treated in a two-step process with effluent recirculation comprising a novel hydrolytic reactor (HR) followed by a Submerged Anaerobic Membrane Bioreactor (SAMBR) operating at a stable permeate flux of 5.6 L/m2 hr (LMH). A soluble COD removal higher than 95% was obtained from the SAMBR. The soluble COD as well as the Total Suspended Solids (TSS) did not build up due to efficient hydrolysis inside the SAMBR, and no VFA accumulation occurred due to the complete retention of methanogens by the membrane as well as the formation of syntrophic associations. Because of the microfiltration membrane in the second reactor a stabilized leachate was obtained from the very first days of the treatment and the highly stable process enabled shorter treatment periods compared to traditional leach bed processes. This experiment showed that the recycle of the stabilised leachate does not lead to a build up of SCOD. Size exclusion chromatography analysis confirmed that high molecular weight compounds were completely degraded and did not appear in the SAMBR permeate, and that low molecular weight fulvic-like and medium MW material were present in the permeate of the SAMBR but their concentration remained stable with time.

You do not currently have access to this content.