The aim of this work is to examine copper removal from sludge permeate with the use of low-cost minerals of Mediterranean origin combined with ultrafiltration membranes. The minerals used were zeolite (clinoptilolite), bentonite and vermiculite. Activated sludge was enriched with 0.01 N (317.7 ppm) of Cu(II). Fixed concentrations of minerals were added to sludge and the pH value was adjusted at 5.5. The mixture was agitated for 2 hours at 800 rpm at room temperature and was then filtered through a batch ultrafiltration system for 1 hour. This experiment was repeated, for comparison purposes, with sludge enriched with 0.01 N of Cu(II) with no mineral addition. The results showed that ultrafiltration membranes with no mineral addition were able to remove a significant amount of copper with removal efficiencies ranging from 59.4–78.3%. The addition of 10 g/l and 20 g/l of bentonite combined with ultrafiltration membranes resulted in removal efficiencies of 94.9% and 99.4% respectively and that of 10 g/l and 20 g/l of vermiculite in removal efficiencies of 93.8% and 96.8%, respectively. The ion exchange capacity of minerals followed the order bentonite > vermiculite > zeolite. Furthermore, membrane fouling was investigated. The addition of zeolite and bentonite reduced membrane fouling, while the addition of vermiculite did not impact on fouling. The use of low-cost minerals in combination with ultrafiltration membranes can be employed to treat industrial wastewater, resulting in a final effluent with very low copper concentrations.

This content is only available as a PDF.
You do not currently have access to this content.