Biological removal of nitrogen and carbon from farm dairy effluent (FDE) was studied with two laboratory-scale systems following nitrification and denitrification processes. Each system consisted of an upflow multilayer bioreactor (UMBR) as a pre-denitrification unit, an aeration tank (AT) as nitrification unit and a secondary clarifier. The optimization of two operational variables, total hydraulic retention time (HRT) and internal recycle (IR) rate with both real-FDE and a synthetic-wastewater were investigated. First, HRTs of 2, 3, 4 and 5 days were tested with synthetic-wastewater at uniform IR rate. The HRT of 4 days proved optimum with high efficiencies for nitrification (>90%), denitrification (>90%) and total chemical oxygen demand (COD) removal (∼90%). The lowest efficiency was recorded at 2 days HRT with 7% nitrification efficiency. This was followed by experimentation with IR rates of 200%, 300% and 400% on both real-FDE and synthetic-wastewater at optimized HRT. The increase in IR to 300% improved the denitrification potential and overall performance with continuous high nitrification efficiency and COD removal whereas IR of 400% retarded the process. The application of combined UMBR and activated sludge system showed good potential for biological removal of nitrogen from FDE.

This content is only available as a PDF.
You do not currently have access to this content.