The behavior and fate of anthropogenic substances during sewage treatment were investigated at a sewage treatment plant (STP) in Sweden which uses mechanical, chemical, and biological methods for sewage treatment and anaerobic digestion of sludge. Influent and effluent water, and sludge from two specific treatment sites were sampled. Mass balances were calculated from measured concentrations of various substances and estimates of the mass flows (water, solids) throughout the process. The results show that the metals (As, Cd, Cr, Hg, Pb) and the majority of PCBs, PCDD/Fs, and PBDEs enter and leave the STP bound to particles. Triclosan and di-(2-ethylhexyl)phthalate adsorb to sludge to a high degree, while the metals (Co, Cu, Ni, Zn) and organophosphate esters seem to pass through the STP unaffected by the process. Generally, the STP was better in removing lipophilic than water soluble compounds. Most of the substances end up in anaerobically digested sludge in almost the same concentrations as in primary sludge. A fugacity based STP model was evaluated for its ability to predict the behavior and fate of the substances and was found feasible for lipophilic compounds. It did however produce poor predictions for water soluble compounds such as organophosphate esters (overestimated) and antibacterial agents (underestimated).

This content is only available as a PDF.
You do not currently have access to this content.