A simple conceptual model for green roof hydrological processes is shown to reproduce monitored data, both during a storm event, and over a longer continuous simulation period. The model comprises a substrate moisture storage component and a transient storage component. Storage within the substrate represents the roof's overall stormwater retention capacity (or initial losses). Following a storm event the retention capacity is restored by evapotranspiration (ET). However, standard methods for quantifying ET do not exist. Monthly ET values are identified using four different approaches: analysis of storm event antecedent dry weather period and initial losses data; calibration of the ET parameter in a continuous simulation model; use of the Thornthwaite ET formula; and direct laboratory measurement of evaporation. There appears to be potential to adapt the Thornthwaite ET formula to provide monthly ET estimates from local temperature data. The development of a standardized laboratory test for ET will enable differences resulting from substrate characteristics to be quantified.

This content is only available as a PDF.
You do not currently have access to this content.