Estimation of uncertainty propagation in watershed models is challenging but useful to total maximum daily load (TMDL) calculations. This paper presents an effective approach, involving the combined application of Rosenblueth method and sensitivity analysis, to the determination of uncertainty propagation through the parameters and structure of the HSPF (Hydrologic Simulation Program-FORTRAN) model. The sensitivity analysis indicates that the temperature is a major forcing function in the DO-BOD balance and controls the overall dissolved oxygen concentration. The mean and standard deviation from the descriptive statistics of dissolved oxygen data obtained using the HSPF model are compared to those estimated using Rosenblueth's method. The difference is defined as the error propagated from water temperature through dissolved oxygen. The error propagation, while considering the second order sensitivity coefficient in Rosenblueth's method, is observed to have a mean of 0.281 mg/l and a standard deviation of 0.099 mg/l. A relative low error propagation value is attributed to low skewness of dependent and independent variables. The results provide new insights into the uncertainty propagation in the HSPF model commonly used for TMDL development.
Skip Nav Destination
Article navigation
Research Article|
September 01 2010
Analysis of uncertainty propagation through model parameters and structure
Abhijit Patil;
1Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA E-mail: zdeng@lsu.edu
E-mail: abhijitapatil1@gmail.com
Search for other works by this author on:
Zhi-Qiang Deng
Zhi-Qiang Deng
1Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA E-mail: zdeng@lsu.edu
Search for other works by this author on:
Water Sci Technol (2010) 62 (6): 1230–1239.
Citation
Abhijit Patil, Zhi-Qiang Deng; Analysis of uncertainty propagation through model parameters and structure. Water Sci Technol 1 September 2010; 62 (6): 1230–1239. doi: https://doi.org/10.2166/wst.2010.149
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Impact Factor 2.430
CiteScore 3.4 • Q2
13 days submission to first
decision
1,439,880 downloads in 2021
35
Views
8
Citations