This study investigated the effects of 2,4-dichlorophenol on reduction of activated sludge in membrane bioreactors. Significant inhibition on sludge growth and slight reduction in COD removal were observed at higher 2,4-dichlorophenol dosages. The deviation between relative specific COD removal rate (q/q0) and relative specific growth rate (μ/μ0) suggested that a minimum 2,4-dichlorophenol concentration was required for uncoupling of anabolism and catabolism. With the increase of the dosage of 2,4-dichlorophenol, stepwise improvement of biomass bioactivity and the reduction in activated sludge production were achieved simultaneously. Compared with the control bioreactor, the peak distribution of floc size in the 2,4-dichlorophenol added bioreactor shifted to a range of smaller floc size. Besides, addition of 2,4-dichlorophenol caused little variation of microorganism community structure and SVI value of the sludge. After 24-hour operation, the residue 2,4-dichlorophenol concentration in the bioreactors was reduced to a negligible level.

This content is only available as a PDF.
You do not currently have access to this content.