Mathematical models are critical to modern environmental biotechnology—both in research and in the engineering practice. Wastewater treatment plant (WWTP) simulators are used by consulting engineers and WWTP operators when planning, designing, optimizing, and evaluating the unit processes that comprise municipal and industrial WWTPs. Many WWTP simulators have been expanded to include a submerged completely-mixed biofilm reactor module that is based on the mathematical description of a one-dimensional biofilm. Leading consultants, equipment manufacturers, and WWTP modelling software developers have made meaningful contributions to advancing the use of biofilm models in engineering practice, but the bulk of the engineering community either does not use the now readily available biofilm reactor modules or utilizes them as ‘black-box’ design tools. The latter approach results in the mathematical biofilm models being no more useful than the empirical design criteria and formulations that have been historically applied to biofilm reactor design. The present work provides a consensus report on the state-of-the art, areas of uncertainty, and future needs for advancing the use of biofilm models in engineering design.

You do not currently have access to this content.