Microcystis aeruginosa was cultured in biologically treated municipal effluent to simulate blue-green algal bloom conditions in a treatment lagoon. The effect of algae in the early, mid and late phases of growth on membrane fouling, chemical coagulation (alum or aluminium chlorohydrate (ACH)) and hydraulic cleaning on the microfiltration of this effluent was investigated. The effect of M. aeruginosa in the early phase was negligible and gave a similar flux profile and permeate volume to that of effluent alone. The increase in M. aeruginosa concentration for the mid and late phases caused a significant reduction in permeate volume compared with the early phase. Full flux recovery was achieved with an alum dose of 1 mg Al3+ L−1 (early phase) and 10 mg Al3+ L−1 (mid phase), demonstrating that membrane fouling was hydraulically reversible. For the late phase, the highest flux recovery was 89%, which was achieved with an alum dose of 5 mg Al3+ L−1. Higher alum dosages resulted in a reduction in flux recovery. The use of 1.5 µm pre-filtration after alum treatment showed little improvement in water quality but led to a drastic reduction in flux recovery, which was attributed to diminishing the protective layer on the membrane surface, thus enabling internal fouling. The performance of ACH was comparable to alum at low dissolved organic carbon (DOC) and cell concentration, but was not as effective as alum at high DOC and cell concentration due to the formation of more compact ACH flocs, which resulted in a higher cake layer specific resistance, leading to the deterioration of performance.
Skip Nav Destination
Article navigation
Research Article|
June 01 2011
Impact of Microcystis aeruginosa on membrane fouling in a biologically treated effluent
Y. T. Goh;
Y. T. Goh
1School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne Vic 3001, Australia
Search for other works by this author on:
J. L. Harris;
J. L. Harris
1School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne Vic 3001, Australia
Search for other works by this author on:
F. A. Roddick
1School of Civil, Environmental and Chemical Engineering, RMIT University, GPO Box 2476, Melbourne Vic 3001, Australia
E-mail: [email protected]
Search for other works by this author on:
Water Sci Technol (2011) 63 (12): 2853–2859.
Citation
Y. T. Goh, J. L. Harris, F. A. Roddick; Impact of Microcystis aeruginosa on membrane fouling in a biologically treated effluent. Water Sci Technol 1 June 2011; 63 (12): 2853–2859. doi: https://doi.org/10.2166/wst.2011.450
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
eBook
Pay-Per-View Access
$38.00