The biodegradation of 2,4,6-trichlorophenol (246TCP) was studied using expanded granular sludge bed (EGSB) reactors and a fluidized bed biofilm reactor (FBBR) filled with activated carbon. One of the EGSB reactor and the FBBR were bioaugmented with Desulfitobacterium strains. 246TCP loading rate was gradually incremented from 10 to 250 mg L−1 day−1. The main pathway of dechlorination was in ortho-position, generating 4-chlorophenol and 2,4-dichlorophenol. The maintenance of both COD degradation efficiency (higher than 80%) and methanogenic efficiency (between 0.3 and 0.6 g CH4–COD g−1 COD consumed) in EGSB reactor implies a great stability of the process. Through isotherm studies in FBBR, it could be deduced that around 52% of 246TCP was completely dechlorinated, whereas the adsorption involved around 16%. By means of FISH studies it was proved that the methanogenic Archaea community was maintained in the bioaugmented EGSB reactor, whereas in the FBBR this community was gradually developed until reaching stability. Desulfitobacterium community was also maintained in the reactors, although D. chlororespirans proportion rise in the FBBR at the higher 246TCP loading rates, implying that this species can withstand the 246TCP toxicity better than D. hafniense.

You do not currently have access to this content.