In this study, to investigate the application of heterogeneous photocatalysis in the removal of organic contaminants from aqueous media a novel tubular continuous-flow photoreactor with supported TiO2-P25 on glass plates was designed and constructed. The photoreactor comprises six quartz tubes and a UV lamp which was placed in the center of the quartz tubes. 4-nitrophenol (4-NP) as a most refractory pollutant was chosen as a probe pollutant to examine the photoreactor efficiency for environmental cleaning applications. Results of experiments show that the removal efficiency of 4-NP in this photoreactor is a function of photoreactor length, gas and liquid flow rates and 4-NP initial concentration. Kinetics analysis indicates that degradation of 4-NP in continuous-mode can be modeled with the Langmuir–Hinshelwood (L–H) model (kL–H = 1.5 mg L−1 min−1, Kads = 0.11 mg−1 L). A design equation was obtained with a combination of L–H modified equation and tubular reactor design equation. This equation can be used for estimation of 4-NP concentration in different photoreactor lengths under various operational parameters. Mineralization study was followed through total organic carbon (TOC) analysis and measurement of nitrite and nitrate as final degradation products.

You do not currently have access to this content.