Continuous Stirred Tank Reactors (CSTRs), operated in batch mode, were used to evaluate the feasibility of psychrophilic (low temperature) digestion of perennial rye grass in a long term experiment (150 days) for the first time. The reactors were operated in parallel at 3 different temperatures, 10, 15 and 37 °C. Hydrolysis, acidification and methanogenesis were assessed by VS degradation, by soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) production, and by methane production, respectively. Hydrolysis was the rate-limiting step at all temperatures and the rates and extent of hydrolysis were considerably lower at 15 and 10 °C, than at 37 °C. The total VS degradation was 53%, 34% and 19% at 37, 15 and 10 °C, respectively. Acidification was not affected by temperature and VFA production and consumption was balanced in all cases, except at 10 °C. Methane yields were 0.215 m3 CH4 kg−1 VS−1 added, 0.160 m3 CH4 kg−1 VS−1 added and 0.125 m3 CH4 kg−1 VS−1 added at 37, 15 and 10 °C, respectively. Methanogenesis was not strongly affected at 15 °C but it became rate-limiting at 10 °C. Overall, the solid degradation and methane production performance under psychrophilic conditions was encouraging and greater than previously reported. Considering the non-acclimated, mesophilic nature of the inoculum, there are grounds to believe that low-temperature anaerobic digestion of grass could be feasible if coupled to efficient hydrolysis of the biomass.

You do not currently have access to this content.