The feasibility of integrating biological hydrogen and methane production in a two-stage process using mixed cultures and cheese whey powder (CWP) as substrate was studied. The effect of operational parameters such as hydraulic retention time (HRT) and organic loading rate (OLR) on the volumetric hydrogen (VHPR) and methane (VMPR) production rates was assessed. The highest VHPR was 28 L H2/L/d, obtained during stable operation in a CSTR at HRT and OLR of 6 h and 142 g lactose/L/d, respectively. Moreover, hydrogen (13 L/L/d) was produced even at HRT as low as 3.5 h and OLR of 163 g lactose/L/d, nonetheless, the reactor operation was not stable. Regarding methane production in an UASB reactor, the acidified effluent from the hydrogen-producing bioreactor was efficiently treated obtaining COD removals above 90% at OLR and HRT of 20 g COD/L/d and 6 h, respectively. The two-stage process for continuous production of hydrogen and methane recovered over 70% of the energy present in the substrate. This study demonstrated that hydrogen production can be efficiently coupled to methane production in a two-stage system and that CWP is an adequate substrate for energy production.

This content is only available as a PDF.
You do not currently have access to this content.