Storage of contaminants in low permeability media (LPM) presents a great challenge for prediction of remediation effectiveness and efficiency. The reason lies in the contaminants' complex behaviors within heterogeneous media. Both interparticle and intraparticle diffusion contribute to the difficulty of precise site assessment. Sorption of contaminants – especially within LPM – may sequester the contaminants from active treatment, while desorption over a long period of time leads to contaminant release from storage and consequent re-contamination. Research has been conducted toward better understanding of contaminant diffusion and sorption/desorption processes to better predict contaminant response to site treatment. However, most of the research has been carried out within homogeneous media, while real scenarios in environmental problems feature media whose permeability and other characteristics vary significantly over the treatment volume. Further, few efforts have combined the interparticle/intraparticle diffusion and sorption/desorption processes together. This research aims at a feasible experimental design of diffusion and desorption of contaminant in heterogeneous media to address the gaps in previous research. A 2-D experimental system was designed to evaluate interparticle/intraparticle diffusion processes of trichloroethylene (TCE) in heterogeneous media. The 2-D system was modified to include organic matter in media for simulation of sorption/desorption processes. Results of the research will improve the understanding of how these different transport processes act together within heterogeneous media. Results will also allow for the evaluation of the impact of contaminant mass transport from within low permeability media at a potential treatment site and can support the development of mathematical tools/models combining interparticle/intraparticle and sorption/desorption processes. Such a model will promote more accurate site assessment and provide more confidence in the choice of an effective, economically optimized remediation strategy.

This content is only available as a PDF.
You do not currently have access to this content.