A large pilot-scale membrane bioreactor (MBR) with a conventional denitrification/nitrification scheme for municipal wastewater treatment has been run for one year under two different aeration strategies in the oxidation/nitrification compartment. During the first five months air supply was provided according to the dissolved-oxygen set-point and the system run as a conventional pre-denitrification MBR; then, an intermittent aeration strategy based on effluent ammonia nitrogen was adopted in the aerobic compartment in order to assess the impact on process performances in terms of N and P removal, energy consumption and sludge reduction. The experimental inferences show a significant improvement of the effluent quality as COD and total nitrogen, both due to a better utilization of the denitrification potential which is a function of the available electron donor (biodegradable COD) and electron acceptor (nitric nitrogen); particularly, nitrogen removal increased from 67% to 75%. At the same time, a more effective biological phosphorus removal was observed as a consequence of better selection of denitrifying phosphorus accumulating organisms (dPAO). The longer duration of anoxic phases also reflected in a lower excess sludge production (12% decrease) compared with the standard pre-denitrification operation and in a decrease of energy consumption for oxygen supply (about 50%).

This content is only available as a PDF.
You do not currently have access to this content.