Pd/multi-walled carbon nanotubes (MWNTs) catalyst used for the gas-diffusion electrode was prepared by ethylene glycol (EG) reduction and characterized by the X-ray diffraction (XRD) and scanning electron microscope (SEM). The results indicated that Pd particles with an average size of 8.0 nm were highly dispersed in the MWNTs with amorphous structure. In a diaphragm electrolysis system with a Ti/RuO2/IrO2 anode and the Pd/MWNT gas diffusion cathode, the degradation of 4-chlorophenol was performed by a combination of electrochemical reduction and oxidation. The combined process was in favor of improving 4-chlorophenol degradation efficiency. The optimum reaction conditions were as following: initial pH 7, aeration with hydrogen and air. Under the optimized electrolysis conditions the removal of 4-chlorophenol in the anodic and cathodic compartments were 98.5 and 90.5%, respectively. Additionally, based on the analysis of electrolysis intermediates using high performance liquid chromatography (HPLC) and ion chromatography (IC), the electrolysis degradation of 4-chlorophenol was proposed containing the intermediates, such as phenol, hydroquinone, benzoquinone, maleic acid, fumaric acid, succinic acid, malonic acid, oxalic acid, acetic acid and formic acid.

This content is only available as a PDF.
You do not currently have access to this content.