The role of the headspace (HS) in the microaerobic removal of hydrogen sulfide from biogas produced during sludge digestion was studied. Research was carried out in a pilot reactor with a total volume of 265 L, under mesophilic conditions. Biogas was successfully desulfurized (99%) by introducing pure oxygen (0.46 NL/Lfed) into the recirculation stream when the HS volume was both 50.0 and 9.5 L. The removal efficacy dropped sharply to ≈15% when the HS was reduced to 1.5 L. The system responded quickly to the operational changes imposed: micro-oxygenation stops and variations in supply, as well as HS volume reductions and increases. As the final result, the microaerobic process required a minimum surface into the gas space to occur, which along with the elemental sulfur deposition in this area indicated that the oxidation took place there. Additionally, the pattern of sulfur accumulation suggested that the removal occurred preferentially on certain materials, and pointed to a significant biological contribution.

You do not currently have access to this content.