In the present study, the Group Method of Data Handling (GMDH) network has been utilized to predict abutments scour depth for both clear-water and live-bed conditions. The GMDH network was developed using a Back Propagation algorithm (BP). Input parameters that were considered as effective variables on abutment scour depth included properties of sediment size, geometry of bridge abutments, and properties of approaching flow. Training and testing performances of the GMDH network were carried out using dimensionless parameters that were collected from the literature. The testing results were compared with those obtained using the Support Vector Machines (SVM) model and the traditional equations. The GMDH network predicted the abutment scour depth with lower error (RMSE (root mean square error) = 0.29 and MAPE (mean absolute percentage of error) = 0.99) and higher (R = 0.98) accuracy than those performed using the SVM model and the traditional equations.

This content is only available as a PDF.
You do not currently have access to this content.