We constructed a multispecies biofilm model for simultaneous reduction of trichloroethene (TCE) and nitrate (NO3−) in the biofilm of a H2-based membrane biofilm reactor (MBfR). The one-dimensional model includes dual-substrate Monod kinetics for a steady-state biofilm with multiple solid and dissolved components. The model has five solid components: autotrophic denitrifying bacteria (ADB), heterotrophic denitrifying bacteria (HDB), Dehalococcoides (DHC), inert biomass (IB), and extracellular polymeric substances (EPS). The model has eight dissolved components: NO3−, TCE, dichloroethene (DCE), vinyl chloride (VC), ethene, hydrogen (H2), substrate-utilization-associated products (UAP), and biomass-associated products (BAP). We used this model to simulate a bench-scale experiment in a H2-based MBfR. The model simulated the trends well: almost complete removal of nitrate, incomplete reduction of TCE, and almost no accumulation of DCE and VC. To gain insight into reductive dehalogenation in a H2-based MBfR, we also simulated the concentrations of nitrate, TCE, DCE, VC, and ethene in the reactor effluent while varying the influent nitrate concentration. Simultaneous low concentrations of nitrate and the three chlorinated ethenes can occur as long as the influent ratio of NO3− to TCE is not too large, so that DHC are a significant fraction of the biofilm.
Skip Nav Destination
Article navigation
Research Article|
September 01 2013
Modeling trichloroethene reduction in a hydrogen-based biofilm
Youneng Tang;
1Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5701, USA
E-mail: [email protected]
Search for other works by this author on:
Rosa Krajmalnik-Brown;
Rosa Krajmalnik-Brown
1Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5701, USA
Search for other works by this author on:
Bruce E. Rittmann
Bruce E. Rittmann
1Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5701, USA
Search for other works by this author on:
Water Sci Technol (2013) 68 (5): 1158–1163.
Article history
Received:
March 08 2013
Accepted:
April 29 2013
Citation
Youneng Tang, Rosa Krajmalnik-Brown, Bruce E. Rittmann; Modeling trichloroethene reduction in a hydrogen-based biofilm. Water Sci Technol 1 September 2013; 68 (5): 1158–1163. doi: https://doi.org/10.2166/wst.2013.362
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
eBook
Pay-Per-View Access
$38.00