This study evaluates the time-dependent dissolution of nanosilver (nAg) in common electrolytes and natural waters. nAg was synthesized via Tollens’ method using sodium citrate as stabilizer; its morphology, UV–Vis spectrum, and particle size were characterized. The dissolved silver was monitored over time using filtration, centrifugation, and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Our results indicated that nanoparticle aggregation, Cl presence, and natural organic compounds could affect the dissolution behavior of nAg. The dissolution of nAg was highly dependent on Cl concentration. Excessive Cl enhanced nanoparticle dissolution, whereas natural organic compound inhibited the dissolution. The dissolution data fitted well with the first-order kinetic model, and the dissolution rate coefficients were calculated using the first-order equation. This study showed the dissolution of nAg under various water conditions. The obtained results may be helpful in predicting nAg behavior in relevant environmental aquatic systems.

This content is only available as a PDF.
You do not currently have access to this content.