A key criterion in microbial fuel cell (MFC) design is that the bio-electrochemical reaction between bacteria and the bulk solution should occur evenly on the electrode surface in order to improve electricity generation. However, experimental optimization of MFC design over a wide range of conditions is limited. Computational fluid dynamics (CFD) technology makes it possible to evaluate physicochemical phenomena such as fluid flows, mass transfer and chemical reaction, which can assist in system optimization. Twelve MFCs (M1–M12) with different internal structures were subjected to CFD analysis. The dead (DS) and working spaces (WS) of the anode compartment were calculated. The flow patterns of the anodic fluid varied according to the internal structures. The WS where the bio-electrochemical reaction can actually occur varied over the range of 0.14–0.57 m2. Based on the above results, the power densities were estimated under the assumption that a monolayer biofilm was formed on the electrode. M11, with 18 rectangular-type internal structures, showed the largest WS of 0.57 m2 and a theoretical maximum power density of 0.54 W/m2. Although the optimization of the MFC configuration with only CFD analysis remains limited, the present study results are expected to provide fundamental data for MFC optimization.
Skip Nav Destination
Article navigation
Research Article|
January 24 2014
Computational fluid dynamics analysis in microbial fuel cells with different anode configurations
Jiyeon Kim;
Jiyeon Kim
1MFC R&BD Center, K-water Institute, Daejeon, Korea
Search for other works by this author on:
Hongsuck Kim;
Hongsuck Kim
1MFC R&BD Center, K-water Institute, Daejeon, Korea
Search for other works by this author on:
Byunggoon Kim;
Byunggoon Kim
1MFC R&BD Center, K-water Institute, Daejeon, Korea
Search for other works by this author on:
Jaecheul Yu
1MFC R&BD Center, K-water Institute, Daejeon, Korea
E-mail: yjcall@kwater.or.kr
Search for other works by this author on:
Water Sci Technol (2014) 69 (7): 1447–1452.
Article history
Received:
November 05 2013
Accepted:
January 10 2014
Citation
Jiyeon Kim, Hongsuck Kim, Byunggoon Kim, Jaecheul Yu; Computational fluid dynamics analysis in microbial fuel cells with different anode configurations. Water Sci Technol 1 April 2014; 69 (7): 1447–1452. doi: https://doi.org/10.2166/wst.2014.041
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Impact Factor 2.430
CiteScore 3.4 • Q2
13 days submission to first
decision
1,439,880 downloads in 2021