We present a novel approach, based on image analysis and modelling, to study the impact of morphological variability (roughness) and fluid dynamics on substrate mass fluxes in biofilms. Specifically, we used this method to assess substrate fluxes in counter-diffusional autotrophic biofilms in a hydrogen-based membrane biofilm reactor. The physical structure of the biofilm was determined in situ at the meso-scale using stereomicroscopy. Image analysis was used to characterize the biofilm structure, and substrate profiles were obtained using microsensors. A two-dimensional, continuum biofilm model including microbial reactions, mass transport, and fluid dynamics was developed to compute substrate conversion in irregularly shaped counter-diffusional biofilms. Experimental biofilm structures were reproduced in the model and simulated under the prevailing substrate and hydrodynamic conditions for flow velocities varied over three orders of magnitude. Model calculations were consistent with experimental results and showed enhanced conversion rates with increased roughness at higher flow velocities. Also, modelling showed that conversion rates in counter-diffusional biofilms were typically higher than in co-diffusional biofilms. This study highlights the potential to use a simple image acquisition approach coupled to a theoretical model, to evaluate biofilm overall substrate utilization related to biofilm morphological heterogeneity.
Skip Nav Destination
Article navigation
Research Article|
March 03 2014
A methodology to assess the effects of biofilm roughness on substrate fluxes using image analysis, substrate profiling, and mathematical modelling
J. P. Pavissich;
J. P. Pavissich
1Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
Search for other works by this author on:
M. Aybar;
M. Aybar
1Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
Search for other works by this author on:
K. J. Martin;
K. J. Martin
1Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
Search for other works by this author on:
R. Nerenberg
1Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
E-mail: [email protected]
Search for other works by this author on:
Water Sci Technol (2014) 69 (9): 1932–1941.
Article history
Received:
September 10 2013
Accepted:
February 14 2014
Citation
J. P. Pavissich, M. Aybar, K. J. Martin, R. Nerenberg; A methodology to assess the effects of biofilm roughness on substrate fluxes using image analysis, substrate profiling, and mathematical modelling. Water Sci Technol 1 May 2014; 69 (9): 1932–1941. doi: https://doi.org/10.2166/wst.2014.103
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
eBook
Pay-Per-View Access
$38.00