Contaminants released by wind-induced sediment resuspension could influence the water quality in shallow lakes. This study aims to reveal the quantitative relationship between wind speed (v) and sediment resuspension rate (r) in Meiliang Bay of Lake Taihu. The study was conducted in three steps. First, the in situ wind speed and current velocity were measured over a period of 2 days in Meiliang Bay to establish the relationship between wind and hydrodynamic conditions; second, an indoor experiment was conducted in a cylindrical simulator with sediment from the study area to determine sediment resuspension rates under different hydrodynamic conditions; and third, linkages between sediment resuspension and wind were determined. The average sediment resuspension rate was highly correlated with the wind speed (R2 = 0.99), and was expressed by r = 20.72v2.034 at wind speeds in the range of 0–14 m/s. The critical wind speed for sediment resuspension is about 7 m/s. Under these conditions, the average resuspension rate could reach 1,000 g/(m2d), with a total phosphorus release rate of 1.1 g/(m2d) and a total nitrogen release rate of 18.1 g/(m2d).

You do not currently have access to this content.