Graphene oxide (GO) was chemically modified with poly(ethylene imine) (PEI) to improve its colloidal stability and was investigated as a potential adsorbent for the removal of methyl orange (MO). The synthesis of PEI-GO was verified with a Fourier transform infrared spectrometer and thermogravimetric analysis. A series of adsorption experiments were carried out to investigate the adsorption capacity of PEI-GO. Adsorption kinetics and thermodynamics studies were performed, and the thermodynamic parameters were calculated. The results showed that PEI could improve the colloidal stability of GO in aqueous solution, and the obtained PEI-GO showed a macroscopically homogeneous dispersion after more than three months. After standing for 90 days, the Brunauer–Emmett–Teller specific surface area of GO decreased from 353 to 214 m2 · g−1, while that of PEI-GO remained almost unchanged (from 432 to 413 m2 · g−1). The PEI-GO exhibited significantly faster kinetic and higher adsorption capacity for MO than GO. Moreover, PEI-GO had a good adsorption capacity in the acidic range, and the highest adsorption of MO occurred at pH = 6.0. The adsorption of MO on PEI-GO was an endothermic, spontaneous and physisorption process.

This content is only available as a PDF.
You do not currently have access to this content.