The Zn2+ and Ni2+ adsorption capacities of six biosorbents derived from water hyacinth (Eichhornia crassipes) (WH) and sawdust (SD) were investigated, with activated carbon as the control. The biosorbents were raw biomass (WH, SD), charred WH (BWH) and SD and sulphonated bio-chars of WH and SD. The effect of the initial solution pH and Zn2+ and Ni2+ concentrations on adsorption capacity was studied, and adsorption isotherms for Zn2+ and Ni2+ evaluated. The initial solution pH significantly influenced adsorption (p < 0.05) but the relationship was generally nonlinear. Zn2+ suppressed Ni2+ adsorption on all biosorbents. The adsorption capacities of the biosorbents were statistically (p ≤ 0.05) similar to or higher than that of activated carbon. The effects of pyrolysis and bio-char sulphonation on adsorption were inconsistent and dependent on biomass type; in most cases bio-char was a better biosorbent than the original biomass, while sulphonation resulted in less or comparable adsorption. Adsorption data obeyed at least one of three isotherms (linear, Langmuir and Freundlich) (r2 = 0.90-0.995, p < 0.05). The study revealed that low-cost biosorbents may be used as alternatives to activated carbon in applications including selective separation of Zn2+ from multi-metal ion solutions containing Ni2+, and water and wastewater treatment.
Skip Nav Destination
Article navigation
Research Article|
September 16 2014
Adsorption of Zn2+ and Ni2+ in a binary aqueous solution by biosorbents derived from sawdust and water hyacinth (Eichhornia crassipes)
Willis Gwenzi;
1Department of Soil Science and Agricultural Engineering, University of Zimbabwe, P O Box MP167, Mount Pleasant, Harare, Zimbabwe
E-mail: [email protected]
Search for other works by this author on:
Tinashe Musarurwa;
Tinashe Musarurwa
1Department of Soil Science and Agricultural Engineering, University of Zimbabwe, P O Box MP167, Mount Pleasant, Harare, Zimbabwe
Search for other works by this author on:
Phillip Nyamugafata;
Phillip Nyamugafata
1Department of Soil Science and Agricultural Engineering, University of Zimbabwe, P O Box MP167, Mount Pleasant, Harare, Zimbabwe
Search for other works by this author on:
Nhamo Chaukura;
Nhamo Chaukura
2Department of Polymer Science & Engineering, Harare Institute of Technology, Box BE277, Belvedere, Harare, Zimbabwe
Search for other works by this author on:
Allen Chaparadza;
Allen Chaparadza
3Department of Chemistry, The College of St. Scholastica, 1200 Kenwood Avenue, Duluth, MN 55811, USA
Search for other works by this author on:
Sharron Mbera
Sharron Mbera
4Department of Chemistry, University of Zimbabwe, P O Box MP167, Mount Pleasant, Harare, Zimbabwe
Search for other works by this author on:
Water Sci Technol (2014) 70 (8): 1419–1427.
Article history
Received:
May 07 2014
Accepted:
September 01 2014
Citation
Willis Gwenzi, Tinashe Musarurwa, Phillip Nyamugafata, Nhamo Chaukura, Allen Chaparadza, Sharron Mbera; Adsorption of Zn2+ and Ni2+ in a binary aqueous solution by biosorbents derived from sawdust and water hyacinth (Eichhornia crassipes). Water Sci Technol 1 October 2014; 70 (8): 1419–1427. doi: https://doi.org/10.2166/wst.2014.391
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
eBook
Pay-Per-View Access
$38.00