Cr(VI) is highly noted as a carcinogenic, mutagenic, and teratogenic pollutant. However, accurate determination of Cr(VI) in aqueous samples is difficult using the conventional diphenylcarbazide (DPCI) spectrophotometric method upon being interfered by co-existed nitrite. This paper illustrates how to eliminate the nitrite influence in a simple but efficient method based on a detailed analysis of interference mechanism. High-performance liquid chromatography analysis revealed that under acidic condition, DPCI was oxidized by nitrite to other substrates, which could not react with Cr(VI). The final oxidation product of DPCI was further purified by thin-layer chromatography and identified as diaryl carbodiazone by Fourier Transform Ion Cyclotron Resonance-Mass Spectrometry (FTICR-MS) and nuclear magnetic resonance. Consequently, an improved method was proposed by simply adding sulfamic acid for eliminating the nitrite interference in Cr(VI) determination. The proposed method was successfully confirmed by the accurate recovery of Cr(VI) from spiked water samples and further proven with inductively coupled plasma-atomic emission spectroscopy, which demonstrated a great potential for determining Cr(VI) concentration in aqueous samples containing nitrite.

You do not currently have access to this content.