A pilot study was conducted for 7 months for the City of Oxnard, California, on the use of constructed wetlands to treat concentrate produced by microfiltration and reverse osmosis (RO) of reclaimed wastewater. The treatment performance of a transportable subsurface-flow wetland was investigated by monitoring various forms of nitrogen, orthophosphate, oxygen demand, organic carbon, and selenium. Significant mass removal of constituents was measured under two hydraulic residence times (HRTs) (2.5 and 5 days). Inflow and outflow concentrations of nitrate-N and ammonia-N were significantly different for both HRTs, whereas nitrite-N and total organic carbon (TOC) were significantly different during HRT2. Mass removal by the constructed wetland averaged 61% of nitrate-N, 32% of nitrite-N, 42% of ammonia-N, 43% of biochemical oxygen demand, 19% of orthophosphate as P, 18% of TOC and 61% of selenium. Mass removal exceeded concentration reductions through water volume loss through evapotranspiration. Calibrated first-order area-based removal rates were consistent with literature ranges, and were greater during HRT1 consistent with greater mass loads, higher hydraulic loading and shorter HRTs. The rate constants may provide a basis for sizing a full-scale wetland receiving a similar quality of water. The results indicated that engineered wetlands can be useful in the management of RO membrane concentrate for reclaimed water reuse.

You do not currently have access to this content.