In this paper, a novel positively charged membrane was prepared through interfacial polymerization technique between polyethyleneimine in aqueous phase and trimesoyl chloride in organic phase. Next, cross-linking of polyamide (PA) layer using ρ-xylylene dichloride (XDC) and glutaraldehyde (GA) was studied. The influences of cross-linking concentrations on the separation and permeation performance of membrane were also investigated. Membranes were characterized in terms of their chemical structure, the cross-sectional and surface morphologies, contact angles, molecular weight cut-off (MWCO) and effect of pH feed solution. The salt rejection sequence of CaCl2 >NaCl > Na2SO4 showed a positive charge at the membrane surface after cross-linking reaction. The MWCO of primary PA membrane decreased from 1,135 to 775 and 885 Da for XDC and GA, respectively. XDC membrane shows highest CaCl2 divalent cationic rejection (95.5%) and lowest water flux (21.1 L/m2.h). This study illustrates a promising method for fabrication of positively charged membrane in cation separation.

You do not currently have access to this content.