Extracted cellulose from Posidonia oceanica was used as an adsorbent for removal of a cationic (Basic blue 9, BB) and anionic textile dye (Acid blue 25, AB) from aqueous solution in single dye system. Characterization of the extracted cellulose and extracted cellulose-dye systems were performed using several techniques such as Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential and Boehm acid–base titration method. Adsorption tests showed that the extracted cellulose presented higher adsorption of BB than AB in single dye system, revealing that electrostatic interactions are responsible, in the first instance, for the dye–adsorbent interaction. In single dye systems, the extracted cellulose presented the maximum adsorption capacities of BB and AB at 0.955 mmol.g−1 and 0.370 mmol.g−1, respectively. Adsorption experiments of AB dye on extracted cellulose saturated by BB dye exhibited the release of the latter dye from the sorbent which lead to dye–dye interaction in aqueous solution due to electrostatic attraction between both species. Interaction of BB and AB dyes were investigated using spectrophotometric analysis and results demonstrated the formation of a molecular complex detected at wavelengths 510 and 705 nm when anionic (AB) and cationic (BB) dye were taken in equimolar proportions. The adsorption isotherm of AB, taking into account the dye–dye interaction was investigated and showed that BB dye was released proportionately by AB equilibrium concentration. It was also observed that AB adsorption is widely enhanced when the formation of the molecular complex is disadvantaged.

You do not currently have access to this content.