The hexavalent chromium, Cr(VI), which is generated in the electroplating process, is toxic to most organisms and potentially harmful to human health. The method generally used for remediation of wastewater containing Cr(VI) employs chemicals with high toxicity. This work proposes an alternative technology for the treatment of these wastewaters, based on photochemical reduction of Cr(VI) by alcohols under radiation, which is environmentally sustainable and economically viable. Initially, a batch reactor in laboratory scale was used to determine the best experimental conditions and its specific reaction rate was calculated. Based on these results, a tubular reactor (artificial radiation and sunlight) was designed and built in semi-pilot scale. Tests were carried out with real wastewater from an electroplating industry containing Cr(VI). Tests conducted under sunlight showed a higher total Cr(VI) reduction than the tests with artificial radiation. The remediation of Cr(VI) from wastewater was 86.7% after 6 h of reaction under sunlight, indicating the high efficiency of the developed process.

You do not currently have access to this content.