Abstract

The chemical oxygen demand (COD) removal mechanism and reaction kinetics were mainly studied in the treatment of oilfield oily sewage containing polymer by three-dimensional electrode reactor. The results proved that the residual active oxides O3, H2O2, •OH and active chlorine in the system of electrochemical reaction could be effectively detected, and the COD removal mechanism was co-oxidation of active oxides; Under these experimental conditions: the electrolysis current of 6 A, surface/volume ratio of 6/25(cm2·L−1), the reaction time of 50 min, the CODcr of treated sewage was no more than 50 mg·L−1; the removal reaction of COD conformed to apparent second-order reaction kinetic model, the correlation coefficient R2 was 0.9728, and the apparent reaction rate constant was k = 3.58 × 10−4 (L·min−1·mg−1·m−2). To reach the goal, the CODcr was no more than 50 mg·L−1 in treated sewage, and the theory minimum processing time was 45.73 min. The verification of experimental results was consistent with kinetic equations.

You do not currently have access to this content.