Abstract
A novel magnetically separable magnetic activated carbon supporting-copper (MCAC) catalyst for catalytic wet peroxide oxidation (CWPO) was prepared by chemical impregnation. The prepared samples were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) method, and scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS). The catalytic performance of the catalysts was evaluated by direct violet (D-BL) degradation in CWPO experiments. The influence of preparative and operational parameters (dipping conditions, calcination temperature, catalyst loading H2O2 dosage, pH, reaction temperature, additive salt ions and initial D-BL concentration) on degradation performance of CWPO process was investigated. The resulting MCAC catalyst showed higher reusability in direct violet oxidation than the magnetic activated carbon (MAC). Besides, dynamic tests also showed the maximal degradation rate reached 90.16% and its general decoloring ability of MCAC was 34 mg g−1 for aqueous D-BL.