The potentiality of a heavy metal-resistance bacterium Acinetobacter sp. HK-1 for removing Ni(II) and Cu(II) ions from aqueous solution and the biosorption mechanism were investigated in this study. The effects of pH, contact time and Ni(II)/Cu(II) concentration on the adsorption process were evaluated and the maximum biosorption capacity of strain HK-1 was found to be 56.65 mg/g for Ni(II) and 157.2 mg/g for Cu(II), respectively. The experimental kinetic data fit well with the pseudo-second-order model (R2 > 0.98) and the biosorption process was best explained by the Langmuir-Freundlich dual model (R2 > 0.97). The morphologies of HK-1 before and after adsorption in a Ni(II)/Cu(II) supplemented system were compared using a scanning electron microscope. After adsorption, the valence state of Ni(II)/Cu(II) was not changed and the formation of nickel/copper phosphate was observed using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction. The results of Fourier transform infrared spectroscopy and XPS further indicated that amine, phosphate and carboxyl groups were involved in the biosorption process. Cu(II) biosorption by Acinetobacter sp. was firstly reported. Based on the above results, it can be concluded that Acinetobacter sp. HK-1 has a promising application in Ni(II) and Cu(II) ion removal from industrial wastewater.

Supplementary data

You do not currently have access to this content.