Abstract

In the present study, a series of hypercrosslinked resins (CH series) was prepared in systematically designed conditions for the adsorption of nitroaromatics from aqueous solution. The newly synthesized CH-10 possesses a Brunauer–Emmett–Teller (BET) surface area up to 1,329.3 m2/g which is larger than that of the widely used hypercrosslinked resin H-103 and it exhibits great advantage over H-103 when subjected to nitrobenzene at low concentrations. The adsorption capacity of CH-10 for nitrobenzene is 1.4 times as much as that of H-103 at the concentration of 100 mg/L. Kinetic study by film diffusion model and intra-particle diffusion model revealed that its distinctive mesoporous structure within pore diameters between 2 and 6 nm played significant role in the mass transfer at low concentrations, and these unique mesopores also resulted in better adsorption capacity, which was confirmed by adsorption thermodynamics study. Moreover, the CH series displayed a good affinity to a wide scope of nitroaromatics and exhibited excellent dynamic adsorption and desorption properties in fixed bed.

You do not currently have access to this content.