Abstract

In this study, a slurry photocatalytic membrane reactor (PMR) was developed and evaluated for the degradation of aqueous phenanthrene (PHE). During continuous process with a hydraulic retention time (HRT) of 140 min, the maximum PHE degradation and total organic carbon (TOC) removal efficiencies were found to be 97% and 79%, respectively. The reuse and recovery potential of TiO2 was studied with continuous recycling. The major intermediates during photodegradation of PHE were found to be phenanthrenequinone, phenanthenol and fluorine. This study also includes an investigation of membrane fouling caused by hydrophilic nano TiO2. The cake layer observed on the membrane surface was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive spectroscopy (EDS). In addition, the effect of operating parameters such as pH and permeate flux on membrane fouling were also investigated. Low permeate flux and alkaline conditions reduced membrane fouling.

You do not currently have access to this content.