Abstract
In this study, we used aqueous solutions containing 1 mg/L of Cd2+ for electrolysis while varying the current density (CD), amount of bentonite added and the effective submerged area to investigate the adsorption capacity of Cd2+ ions onto bentonite by electrolytic aggregation. The adsorption of Cd2+ ions increased with increasing amount of bentonite added to the electrolytic solution. The addition of bentonite also regulated the pH of the electrolytic solution during the electrolysis process in addition to the hydrolysis of water. The maximum adsorption capacities at equilibrium (qe) for current densities of 3.14 and 7.49 mA/cm2 (i.e. for 2 and 1 L electrolytic solutions) with 0.2 g of bentonite were 4.54 and 2.92 mg/g, respectively. The removal of Cd2+ (RCd) clearly depended on the pH of the electrolytic solution. Moreover, qe decreased with increasing amount of bentonite used for electrolytic aggregation. The findings of this study will be useful for understanding the aggregation of clay particles under electrolysis and their adsorption behaviors.