Abstract

Bioelectricity generation from biodegradable compounds using microbial fuel cells (MFCs) offers an opportunity for simultaneous wastewater treatment. This study evaluated the synergy of electricity generation by the MFC while reducing pollutants from sugar beet processing wastewater (SBPW). A simple dual-chamber MFC was constructed with inexpensive materials without using catalysts. Raw SBPW was diluted to several concentrations (chemical oxygen demand (COD) of 505 to 5,750 mg L−1) and fed as batch-mode into the MFC without further modification. A power density of 14.9 mW m−2 as power output was observed at a COD concentration of 2,565 mg L−1. Coulombic efficiency varied from 6.21% to 0.73%, indicating diffusion of oxygen through the cation exchange membrane and other methanogenesis and fermentation processes occurring in the anode chamber. In this study, >97% of the COD and up to 100% of the total suspended solids removals were observed from MFC-treated SBPW. Scanning electron microscopy of anode indicated that a diverse community of microbial consortia was active for electricity generation and wastewater treatment. This study demonstrated that SBPW can be used as a substrate in the MFC to generate electricity as well as to treat for pollutant removal.

You do not currently have access to this content.