Abstract

While computational modelling has increasingly supported wastewater bioreactor engineering, novel numerical techniques have been developed such as the lattice-Boltzmann method (LBM). With vinasse treatment as case study, this work is a first step towards a comprehensive LBM simulator of a continuous-flow anaerobic packed-bed reactor. Extensions from typical models comprise one-dimensional (besides time) dependence, species transport via convection and diffusion, and imposition of either Dirichlet or Danckwerts condition at inlet. The LBM simulator proved to be operational when simulating the bioreactor at different hydraulic retention times (HRTs). Simulated profiles show that stepwise feeding concentrations are smoothed as they are transported towards the bioreactor exit while concentrations increase or decrease in response to generation or degradation kinetics. Good fitting was observed for concentrations of acetic acid (2.1 kg-COD/m3 for HRT = 24 h) and butyric acid (1.3 kg-COD/m3 for HRT = 16 h) at the exit whereas other concentrations were numerically simulated at proper order of magnitude.

You do not currently have access to this content.