Abstract

Efflux pumps coded for by CDR1, CDR2, FLU1 and MDR1 genes could be responsible for the observed resistant phenotypes in azole-resistant Candida albicans from environmental water. This was demonstrated for clinical isolates. The aim of this study was to determine the presence and genetic similarity between efflux pump genes from clinical and environmental C. albicans isolates. Yeasts were isolated and identified using 26S rRNA gene sequencing. Disk diffusion tests were conducted. PCR was used to detect the presence of efflux genes. The fragments were sequenced and subjected to BLAST and subsequent phylogenetic analysis. Thirty seven C. albicans were identified from five selected rivers; Mooi River (19 isolates), Harts River (9 isolates), Marico River (5 isolates), Crocodile River (3 isolates) and Schoonspruit River (1 isolate). All the isolates were completely resistant to azoles. Efflux pump genes were detected in most (≥60%) of the isolates. Phylogenetic analysis showed high sequence similarity between sequences from environmental isolates and clinical isolates. Resistance to the azoles and the detection of efflux pump genes renders these antifungal agents ineffective. This is a major problem, particularly for the immune-compromised sector of the community of the North West Province and warrants further investigation.

You do not currently have access to this content.