The aim of the present study was to investigate the performance of a novel coagulant, i.e. ZrOCl2, for the removal of anthraquinone-based reactive dye from aqueous solution. An ideal experimental setup was designed based on central composite design using response surface methodology to determine the individual and interactive effects of different operational variables (i.e. pH, coagulant dose and dye concentration) on treatment performance in terms of dye and chemical oxygen demand (COD) removal efficiencies. Total 92.58% dye and 85.33% COD removal were experimentally attained at optimized conditions at low coagulant dose, i.e. 156.67 mg/L for the dye concentration of 105.67 mg/L at pH 2. To validate the working pH of the metal coagulant, the static charge of ZrOCl2 was measured using Eh value. The performance of the coagulant was validated with experimental and predicted values in the selected data set, and R2 values for both responses were found to be 0.99 and 0.95 respectively, which shows the reliability of the experimental design. Further, the toxicity of the coagulant was assessed and no such toxicity was found even up to the concentration of 500 mg/L, proclaiming the disposal of sludge may not exhibit any threat to humans. Experimental results suggested that the ZrOCl2 could be used as an eco-friendly coagulant for dye wastewater treatment.

You do not currently have access to this content.