Abstract

The effects of mixed feeding of boiled potato and waste activated sludge (WAS) on the performance of a microbial fuel cell (MFC) in treating solid potato waste were investigated. The coulombic efficiency (CE) of four MFCs fed with potato cubes containing 0, 48.7, 67.3 and 85.6% of boiled potato was 53.5, 70.5, 92.7 and 71.1%, respectively, indicating enhanced electricity generation and the existence of an optimum mixing ratio. The hydrolysis rate estimated using a first-order sequential hydrolysis model increased from 0.061 to 0.191 day−1, leading to shortening of the startup time for current density reaching its maximum from 25 to 5 days. The final chemical oxygen demand (COD) removal reached 85%. The CE of seven MFCs, fed with raw potato alone, sterilized/unsterilized WAS alone, and four mixed samples of raw potato with sterilized WAS at ratios of 2:1 and 4:1 and unsterilized WAS at 2:1 and 4:1, was found to be 6.1, 43.6, 0.3, 31.0, 16.5, 0.9 and 31.1%, respectively. The hydrolysis rate increased from 0.056 to 0.089 day−1, and the final COD removal changed from 39.5 to 89.6% following the order: potato alone > mixture of potato & WAS > sterilized WAS alone > unsterilized WAS alone.

You do not currently have access to this content.